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Abstract
Although the associations between a patient’s body mass index (BMI) and metabolic diseases, as
well as their breath test results, have been studied, the relationship between breath
hydrogen/methane levels and metabolic diseases needs to be further clarified. We aimed to
investigate how the composition of exhaled breath gases relates to metabolic disorders, such as
diabetes mellitus, dyslipidemia, hypertension, and nonalcoholic fatty liver disease (NAFLD), and
their key risk factors. An analysis was performed using the medical records, including the lactulose
breath test (LBT) data of patients who visited the Ajou University Medical Center, Suwon, Republic
of Korea, between January 2016 and December 2021. The patients were grouped according to four
different criteria for LBT hydrogen and methane levels. Of 441 patients, 325 (72.1%) had positive
results for methane only (hydrogen< 20 parts per million [ppm] and methane⩾ 3 ppm). BMIs
and NAFLD prevalence were higher in patients with only methane positivity than in patients with
hydrogen and methane positivity (hydrogen⩾ 20 ppm and methane⩾ 3 ppm). According to a
multivariate analysis, the odds ratio of only methane positivity was 2.002 (95% confidence interval
[CI]: 1.244–3.221, P = 0.004) for NAFLD. Our results demonstrate that breath methane positivity
is related to NAFLD and suggest that increased methane gas on the breath tests has the potential to
be an easily measurable biomarker for NAFLD diagnosis.

1. Introduction

The prevalence of raised body mass indexes (BMIs)
has significantly increased in many countries over
several decades [1], requiring continued efforts to
address this problem. A high BMI is a significant risk
factor for metabolic diseases, including nonalcoholic
fatty liver disease (NAFLD), diabetes mellitus, dyslip-
idemia, and hypertension [2–4]. The increasing pre-
valence of NAFLD, which progresses to liver fibrosis,
cirrhosis [5–7], and even hepatocellular carcinoma,
has become a global health issue in particular.

The human intestine contains approximately 40
trillion intestinal microorganisms of approximately

1000 species, including archaea, bacteria, and euk-
aryotic cells [8, 9]. They maintain human health
by interacting normally with the body. However, an
imbalance in normal intestinal microorganisms con-
tributes to the development of functional digest-
ive diseases, inflammatory bowel diseases (IBDs),
and metabolic diseases, such as NAFLD, obesity,
and diabetes mellitus [10–14]. Emerging evidence
has revealed a relationship between microbial imbal-
ances in the small intestine and metabolic diseases.
Small intestinal bacterial overgrowth (SIBO), a small
intestinal microbial imbalance, is a heterogeneous
condition characterized by the overgrowth of spe-
cific microorganisms in the small intestine. SIBO is
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associated with obesity [15] and contributes to the
development of NAFLD through the gut-liver axis via
microbe-derived metabolites, bile salt deconjugation,
and increased intestinal permeability [16]. However,
previous studies have shown that the gut microbiota’s
effect on obesity which is associated with NAFLD,
may vary depending on the specific type of gas pro-
duced by microorganisms in the small intestine. For
example, an increase in hydrogen-producing bacteria
is associated with weight loss [17], and an increase
inmethane-producingmicro-organisms is associated
with weight gain [18]. However, these studies had
limitations in that a sufficient number of patients
were not analyzed. Therefore, using a sufficient num-
ber of patients, we examined whether there is a rela-
tionship between metabolic diseases, such as obesity
and NAFLD, depending on the type of gas produced
in the small intestine.

The lactulose breath test (LBT) is widely used
to detect and diagnose hydrogen-producing bacteria
or methanogens by measuring the concentrations of
breath hydrogen andmethane produced by the intest-
inal microbiota [19]. In this study, we investigated the
association between hydrogen and methane levels in
the LBT and metabolic diseases, including NAFLD,
diabetes mellitus, dyslipidemia, and hypertension.

2. Materials andmethods

2.1. Patients and design
The patients in this study were selected from patients
who underwent an LBT among those who visited
the Department of Family Medicine and the Health
Promotion Center at Ajou UniversityMedical Center,
Suwon, Republic of Korea, between January 2016
and December 2021 due to abdominal discomfort,
pain, abnormal bowel habit changes, and indigestion.
Figure 1 shows a flowchart of the selection of the
patients for this study. Of the initial 1,476 patients
identified, 1025 patients who met any one of the
following criteria were excluded: (1) taking dietary
supplements or medications such as probiotics, tak-
ing antibiotics that could alter the composition of
the intestinal microbiome, or taking any other med-
ication that might have an impact on bowel func-
tion for 1 month before this study; (2) a history of
gastrointestinal disorders such as peptic ulcer dis-
ease or IBD and prior intestinal surgeries (exclud-
ing appendectomies); (3) heavy drinking (consuming
>210 g of alcohol per week for males and>140 g per
week for females); and (4)missing data in the records.
A total of 451 patients were reviewed, of which the
data of 441 were analyzed in this study.

2.2. Anthropometry and data collection
The BMIs were determined by dividing an indi-
vidual’s weight by the square of their height (kgm−2).

Alcohol consumption data collected using a self-
report questionnaire were transformed into weekly
measurements of alcohol intake and expressed as
grams of ethanol per week. The conversion was con-
ducted using a graduated-frequency method [20].
A diagnosis of diabetes mellitus was defined by the
administration of insulin or oral hypoglycemic drugs
or by fasting blood glucose levels⩾126 mg dl−1.

Dyslipidemia was defined as the presence of a
previously diagnosed hyperlipidemic condition or
use of cholesterol-lowering medication during the
study period. Hypertension was defined by verifying
antihypertensive medication use or evaluating blood
pressures (BPs) (systolic BP ⩾140 mmHg, diastolic
BP ⩾90 mmHg). The presence of a fatty liver was
verified through an abdominal ultrasonography scan
using a 3.5 MHz transducer. Abdominal ultrasound
was performed by one of three experienced radiolo-
gists. The diagnosis of NAFLD was based on stand-
ard criteria, which included the evaluation of paren-
chymal brightness, bright vessel walls, beam atten-
uation, and liver-renal contrast [21]. We employed
the following criteria to identify cases of NAFLD:
indistinct presentation of the intrahepatic stromal
structure, mild to moderate hepatomegaly with blunt
borders, reduced intrahepatic blood flow signal with
normal blood flow distribution, and increased liver
brightness compared to the renal parenchyma, where
fatty changes are less likely to occur. We considered
the presence of a fatty liver, irrespective of the degree
of fat accumulation, as an indicator of NAFLD.

2.3. LBT
All patients were requested to comply with the fol-
lowing restrictions to minimize basal hydrogen and
methane levels on the LBT tests: (1) a carbohydrate-
restricted diet 1 d before the breath test, and (2) avoid
engaging in physical exercises and smoking within 2 h
before and during the 2 h test. Before collecting the
breath gas samples for the baseline analysis of hydro-
gen and methane, participants were asked to wash
their mouths with 20 ml of 1% chlorhexidine solu-
tion. Before the following breath sample collections,
participants consumed a syrupmixedwith 10 g of lac-
tulose concentrate (Duphalac® manufactured by JW
Pharmaceutical, South Korea) and 200 ml of water.

Subsequently, exhaled breath samples were col-
lected for 2 h (every 20 min within the initial hour,
followed by 15 min intervals for the next hour). The
collected hydrogen and methane samples were ana-
lyzed using a gas chromatograph (Breath Tracker SC
Analyzer, QuinTron, Wisconsin, USA).

In this study, patients with hydrogen (H2) and
methane (CH4) breath tests were classified into the
following four groups: (1) H+ (hydrogen only pos-
itive: CH4 < 3 parts per million [ppm] at any time
and ⩾20 ppm increase in H2 over baseline within
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Figure 1. Flow chart showing the selection of study subjects. LBT= lactulose breath test.

90 min); (2) M+ (methane only positive: CH4 ⩾ 3
ppm at any time and <20 ppm increase in H2 over
baseline within 90 min); (3) H+/M+ (hydrogen and
methane positive: CH4 ⩾ 3 ppm at any time and
⩾20 ppm increase inH2 over baseline within 90min);
(4) normal (CH4 < 3 ppm at any time and<20 ppm
increase in H2 over baseline within 90 min) [18, 22].
As the primary objective of this study was to exam-
ine the association between breath hydrogen/meth-
ane gas formed by intestinal microbiota and meta-
bolic diseases, we applied the criterion used in previ-
ous studies on the relationship between methane gas
andBMI as amethane gas positivity criterion [18, 22].

On the other hands, although lactose intolerance
is common in Asians, the amount of lactose required
to diagnose this condition is more than 10 g [23, 24],
so the amount of lactose contained in Duphalac®,
which consists of a syrup mixed with 10 g of lactu-
lose, is not enough to raise concern about false pos-
itives. Therefore, false positives due to hidden lactose
intolerance patients can be ignored.

2.4. Data analysis
SPSS Statistics 26.0 software (IBM) was used for the
statistical analysis of the data. Continuous variables
were expressed as means ± standard deviations, and
categorical variables were presented using numbers
and percentages.

To analyze continuous variables, independent t-
tests and one-way analysis of variance with Scheffé’s
post-hoc test were used for the mean comparison
of two and three groups, respectively. The chi-
squared test was used to compare categorical variables
between the groups.

Logistic regression analyses were performed to
investigate the relationship between metabolic dis-
eases and breath test results, considering potential
confounding factors, including age, sex, obesity, and
alcohol consumption. Statistical significance was set
at P < 0.05.

2.5. Ethics statement
This study followed the ethical principles of med-
ical research as stated in the Declaration of Helsinki.
Approval was obtained from the Institutional Review
Board (IRB) of Ajou University Medical Center,
Suwon-si, Republic of Korea (IRB No. AJOUIRB-
DB-2023-158). The IRB waived the requirement for
informed consent.

3. Results

Of the 451 patients enrolled in this study, 325
(72.1%) tested positive for methane only (M+),
10 (2.2%) tested positive for hydrogen only (H+),
64 (14.2%) tested positive for both hydrogen and
methane (H+/M+), and 52 (11.5%) tested negative
for both hydrogen and methane (normal) (table 1).
Patients with H+ results were excluded from further
analyses because the number of patients in this group
was not statistically significant.

No significant differences were found in the gen-
eral characteristics, such as sex, height, and alcohol
consumption, among the three groups of patients
when considering the hydrogen or methane breath
test results. However, patients with M+ results had a
highermean age, body weight, BMI, andNAFLD pre-
valence than those with H+/M+ results. Conversely,
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Table 1. Comparisons between methane and hydrogen positive groups (n= 441).

Variables M+ (n= 325)a H+ /M+ (n= 64)b Normal (n= 52)c P value Post Hoc

Age (yr) 51.35± 9.04 48.03± 9.89 49.35± 7.85 0.015∗ a> b
Gender (male, %) 0.554†

Man 291 (89.54) 56 (87.50) 44 (84.62)
Woman 34 (10.46) 8 (12.50) 8 (15.38)
Alcohol (g/week) 45.88± 55.48 48.95± 58.42 41.03± 49.35 0.743∗

Height (cm) 169.95± 6.76 169.36± 6.57 170.00± 6.20 0.803∗

Weight (kg) 73.90± 11.13 70.30± 10.09 71.33± 10.75 0.027∗ a> b
BMI (kg m−2) 25.47± 3.11 24.39± 2.62 24.55± 2.88 0.008∗ a> b
Hypertension (%) 68 (20.92) 6 (9.38) 7 (13.46) 0.058†

Diabetes mellites (%) 43 (13.23) 4 (6.25) 4 (7.69) 0.182†

Dyslipidemia (%) 55 (16.92) 12 (18.75) 4 (7.69) 0.200†

Non-alcoholic fatty liver (%) 225 (69.23) 27 (42.19) 31 (59.62) <0.001† a> b

Data are expressed as mean± SD or number (percentage), as appropriate.

BMI= body mass index, SD= standard deviation.
∗
P value was calculated using One-way analysis of variance. †P value was calculated using χ2 test.

Table 2.Hydrogen gas values over time in the hydrogen gas positive, methane gas positive, hydrogen/methane positive, and normal
group in the breath test.

Variables M+ (n= 325)a H+ /M+ (n= 64)b Normal (n= 52)c P value∗ Post Hoc

H2_Baseline (ppm) 9.10± 12.26 6.88± 7.95 10.58± 12.36 0.221
H2_20 min (ppm) 8.35± 10.62 8.09± 10.02 11.27± 8.55 0.152
H2_40 min (ppm) 7.55± 9.60 9.88± 12.62 10.70± 9.44 0.045
H2_60 min (ppm) 7.45± 9.60 17.91± 15.61 9.34± 8.36 <0.001 b> a, c
H2_75 min (ppm) 8.22± 10.12 30.70± 19.31 11.13± 9.84 <0.001 b> a, c
H2_90 min (ppm) 9.47± 10.75 43.66± 19.16 13.54± 8.92 <0.001 b> a, c
H2_Min (ppm) 5.31± 8.00 5.58± 7.11 6.96± 7.13 0.358
H2_Max (ppm) 12.83± 12.61 44.11± 19.25 17.06± 11.59 <0.001 b> a, c
∗
P value was calculated using One-way analysis of variance.

Table 3.Methane gas values over time in the hydrogen gas positive, methane gas positive, hydrogen/methane positive and normal group
in the breath test.

Variables M+ (n= 325)a H+ /M+ (n= 64)b Normal (n= 52)c P value∗ Post Hoc

CH4_Baseline (ppm) 8.89± 8.17 7.42± 11.03 0.54± 0.60 <0.001 a, b> c
CH4_20 min (ppm) 8.45± 7.03 7.58± 11.35 0.75± 0.62 <0.001 a, b> c
CH4_40 min (ppm) 8.34± 6.64 7.69± 9.55 0.73± 0.59 <0.001 a, b> c
CH4_60 min (ppm) 8.30± 6.50 8.78± 9.96 0.56± 0.57 <0.001 a, b> c
CH4_75 min (ppm) 8.58± 6.82 10.45± 11.57 0.67± 0.64 <0.001 a, b> c
CH4_90 min (ppm) 8.74± 6.39 11.55± 11.92 0.92± 0.58 <0.001 a, b> c
CH4_Min (ppm) 7.14± 5.69 6.28± 8.53 0.27± 0.48 <0.001 a, b> c
CH4_Max (ppm) 10.24± 8.26 11.94± 12.94 1.27± 0.44 <0.001 a, b> c
∗
P value was calculated using One-way analysis of variance.

no notable association was observed between breath
test results and other metabolic diseases such as
hypertension, diabetes mellitus, or dyslipidemia.

Patients with M+ results had a statistically signi-
ficant higher mean BMI (25.47 ± 3.11 for M+ vs.
24.39± 2.62 for H+/M+, P= 0.009) based on the t-
test between the M+ and H+/M+ groups. They also
had a significantly higher mean BMI than the nor-
mal group (P= 0.046). Patients with M+ results also
had a higher prevalence of hypertension (20.92% for
M+ vs. 9.38% for H+/M+, P = 0.031) and NAFLD
(69.23% forM+ and 42.19% forH+/M+, P< 0.001)

than patients with H+/M+ according to the chi-
squared test for intergroup comparison.

Table 2 shows the differences in hydrogen gas con-
centrations between the groups over time. Exhaled
hydrogen concentration values measured at baseline
and 20 min after ingesting lactulose showed no dif-
ferences between the groups. However, the exhaled
hydrogen concentration values measured at and 40,
60, 75, and 90min after lactulose administration were
different between the groups. Table 3 shows the differ-
ences in methane gas concentration values between
the groups over time. The methane gas concentration
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Table 4.Multiple Logistic Regression Analysis of M+ as an Independent Variable and Metabolic disease as a Dependent Variable.

Variables

Univariate analysis Multivariate analysis∗

Crude OR (95%CI) P value Adjusted OR (95%CI) P value

Hypertension 1.958 (1.073–3.574) 0.029 1.546 (0.819–2.919) 0.179
Diabetes mellites 1.982 (0.936–4.197) 0.074 1.423 (0.647–3.129) 0.380
Dyslipidemia 1.147 (0.650–2.024) 0.635 0.905 (0.500–1.637) 0.742
Non-alcoholic fatty liver 2.180 (1.430–3.322) <0.001 2.002 (1.244–3.221) 0.004

CI= confidence interval, Obesity= BMI equal to or above 25.
∗
Multivariate analysis was performed using binary logistic regression analysis.

Adjusted for gender, age, obesity, and alcohol consumption.

values differed between the groups in all breath tests
over time.

To validate the relationship between metabolic
diseases and M+ results, a logistic regression ana-
lysis was conducted. Table 4 shows the relation-
ship between metabolic diseases and M+ results.
According to the univariate analysis, hypertension
andNAFLDwere related toM+ results in the patients
in this study. The odds ratio (OR) for M+ results was
1.958 (P = 0.029) in patients with hypertension and
2.180 (P< 0.001) in those with NAFLD. After adjust-
ing for potential confounding factors, only NAFLD
was significantly associated with M+ results (OR:
2.002, P = 0.004).

4. Discussion

This retrospective study found an association
between methane positivity (M+), high BMIs, and
NAFLD. The criterion formethane positivity (3 ppm)
used in this study differed from the consensus meth-
ane level (10 ppm) generally used for the diagnosis of
intestinal methane overgrowth (IMO) [25]. However,
different methane level criteria have been used in pre-
vious reports [26]. The association between BMI and
breath methane levels has previously been demon-
strated using a methane level criterion of 3 ppm [18,
22]. Participants with high methane and low hydro-
gen levels (M+) showed higher prevalences of meta-
bolic diseases, including hypertension and NAFLD,
than those with H+/M+ positivity.

The relationship between the BMI and meth-
ane concentration measured using the breath test
was first demonstrated by Basseri et al [18]. In their
study, patients with methane-positive results had
higher BMIs than those with methane-negative res-
ults. Methanogens in the gut have been suggested
to have the potential to increase energy extraction
efficiency from food, thus contributing to obesity.
Through the anaerobic fermentation of dietary fibers,
such as polysaccharides, methanogens can generate
more short-chain fatty acids, which are absorbed in
the intestines [26, 27] and become additional energy
sources. The relationship between higher BMIs and
higher breath methane concentrations may also be
due to constipation [28–30]. Slowing of colonic

transit due to constipation increases the duration for
absorption of nutrients [31, 32].

Although the exact mechanism that leads to
the relationship between methane gas-producing
microbiota and NAFLD is unknown, an increase
in methane-producing microbiota indicates gut
dysbiosis [33]. This concept can be explained as
follows. Damage to the intestinal barrier due to
increased methanogen levels in the gut results in
increased intestinal permeability, accumulation of
lipopolysaccharides, and increased endogenous eth-
anol production, which may contribute to fat accu-
mulation in the liver [33, 34]. It also affects energy
recovery from food and choline and bile acid meta-
bolism, contributing to the development of NAFLD
[18, 33, 34]. Another possible mechanism involves
the relationship between methanogens, butyrate,
and fatty liver. A previous study used human feces
to examine the relationship between butyric acid
and the presence and abundance of methanogenic
archaea. In this study, researchers found that most of
the methanogenic archaea were Methanobrevibacter
smithii and that there was an inverse relationship
between the mean fecal butyrate concentration and
methanogen abundance [35]. In contrast, in vivo sup-
plementation with butyrate or butyrate-producing
microbiota alleviates the occurrence of metabolic dis-
eases such asNAFLD and liver fibrosis [36, 37]. This is
because butyrates can act as regulators that promote
fatty acid oxidation and reduce lipogenesis [36, 38].
Therefore, reduced butyrate production bymethano-
genic microbiota may contribute to NAFLD forma-
tion by inhibiting fatty acid oxidation and increasing
lipogenesis in the liver.

Meanwhile, our study results showed that the pre-
valence of methane positivity in patients was higher
(72%) than previous knowledge. According to pre-
viously published literature [39, 40], approximately
30%–60% of the population can be expected to be
methane-positive. The difference between our find-
ings and those of other studies could be because the
methane-positivity criteria applied in this study was
>3 ppm, which is lower than the 10 ppm applied in
the IMO diagnostic criteria [25].

This study had several potential limitations. First,
a causal relationship could not be established because
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of this study’s cross-sectional design. Second, more
reliable results should be obtained through histolo-
gical evidence or other imaging tests, such as elas-
tography, to diagnose NAFLD. Thus, the fact that
it was diagnosed using an easily measurable ultra-
sound should be recognized as a major limitation.
Third, patients with hydrogen positivity (H+) were
excluded because of the small number of individu-
als (2.2% of the total patients), which limited their
representation in the study. Fourth, although the LBT
is widely used to detect the concentrations of breath
hydrogen and methane produced by intestinal bac-
teria, LBT results are an indirect way to assess the
profile of intestinal bacteria. Additional investigations
are needed to evaluate the role of the microbiome
in the development of NAFLD and other metabolic
diseases, as well as to determine the significance of
LBT test results through the application of molecu-
lar diagnostics, such as next-generation sequencing
[41, 42]. Finally, the observed power of our data was
0.57, as the event per variable for somemetabolic dis-
eases (dyslipidemia and diabetes mellitus) was less
than 10, and the stability of the logistic model may
be low. Therefore, future research is needed with a
sample size that includes a sufficient prevalence of
these metabolic diseases.

Despite these limitations, this study had several
strengths. We used a cross-sectional sample of 451
Korean patients. This is the first study to examine
the association between breath gases, elevated BMIs,
and metabolic diseases. In addition, while previous
studies investigated methane only [22] or concluded
a positive association when patients produced both
methane and hydrogen [18], the findings of this study
demonstrated significant associations between M+
patients, higher BMIs, and NAFLD. Patients positive
for hydrogen andmethane had a lowermeanBMI and
lower prevalence of NAFLD.

In summary, we demonstrated an association
between methane positivity on breath tests and
NAFLD. This study also found that patients with a
hydrogen-producing enteric condition in addition to
a methane-producing condition might have a low
BMI and low prevalence of NAFLD. Future studies on
patients with a balanced proportion of confounding
variables, such as sex, BMI, and methane and hydro-
gen positivity, are needed to develop a breath test as a
novel diagnostic tool for obesity and NAFLD.
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